GPU Programming with Python

There's more...

A warp executes one common instruction at a time. So, to maximize the efficiency of the
structure all must agree with the same thread's path of execution. When more than one
thread block is assigned to a multiprocessor to run, they are partitioned into warps that are
scheduled by a component called the warp scheduler.

Understanding the PyCUDA memory model

with matrix manipulation

A PyCUDA program, to make the most of available resources, should respect the rules
dictated by the structure and the internal organization of the SM that imposes constraints on
the performance of the thread. In particular, the knowledge and correct use of the various
types of memory that the GPU makes available is fundamental in order to achieve maximum
efficiency in the programs. In the CUDA-capable GPU card, there are four types of memories,
which are defined, as follows:

» Registers: In this, a register is allocated for each thread. This can only access its
register but not the registers of other threads, even if they belong to the same block.

» The shared memory: Here, each block has its own shared memory between the
threads that belong to it. Even this memory is extremely fast.

» The constant memory: All threads in a grid have constant access to the memory,
but can be accessed only while reading. The data present in it persists for the entire
duration of the application.

» The global memory: All threads of all the grids (so all kernels) have access to the
global memory. The constant memory data present in it persists for the entire
duration of the application.

(DEVICE) GRID

BLOCK(0,0)

Registers I

Thread
0,0)

!

SHARED MEMORY

Registers

!

Thread
(1,0)

!

BLOCK(1,0)

SHARED MEMORY

I Registers

Thread
(0,0)

!

GLOBAL MEMORY

CONSTANT MEMORY

|

Registers

¢

Thread
1,0

!

|

The GPU memory model

Chapter 6

One of the key points to understand how to make the PyCUDA programs with satisfactory
performance is that not all memory is the same, but you have to try to make the best of each
type of memory. The basic idea is to minimize the global memory access via the use of the
shared memory. The technique is usually used to divide the domain/codomain of the problem
in such a way so that we enable a block of threads to perform its elaborations in a closed
subset of data. In this way, the threads adhering to the concerned block will work together to
load the shared global memory area that is to be processed in the memory, to then proceed to
exploiting the higher speed of this memory zone.

The basic steps to be performed for each thread will then be as follows:

1. Load data from the global memory to the shared memory.

2. Synchronize all the threads of the block so that everyone can read safety positions
shared memory filled by other threads.

3. Process the data of the shared memory.

4. Make a new synchronization as necessary to ensure that the shared memory has
been updated with the results.

5. Write the results in the global memory.

How to do it...

To better understand this technique, we'll present an example which will clarify this approach.
This example is based on the product of two matrices. The previous figure shows the product
of matrices in the standard way and the correspondent sequential code to calculate where
each element must be loaded from a row and a column of the matrix input:

void SequentialMatrixMultiplication(float*M,float *N,float *P, int
width)
{
for (int i1=0; i< width; ++1i)
for(int j=0;j < width; ++3j) {
float sum = 0;
for (int k = 0 ; k < width; ++k) {
float a = M[I * width + k];
float b = N[k * width + j];
sum += a * b;
}

P[I * width + j] = sum;

GPU Programming with Python

If each thread was entrusted with the task of calculating an element of the matrix, the
memory accesses would dominate the execution time of the algorithm. What we can do is rely
on a block of threads for the task of calculating a submatrix of output so that it is possible to
reuse the data loaded from the global memory and to collaborate threads in order to minimize
the memory accesses for each of them.

The following example shows this technique:

import numpy as np
from pycuda import driver, compiler, gpuarray, tools

-- initialize the device
import pycuda.autoinit

kernel code_ template = """
__global__ void MatrixMulKernel (float *a, float *b, float *c)
{
int tx = threadIdx.x;
int ty = threadIdx.y;
float Pvalue = 0;
for (int k = 0; k < % (MATRIX SIZE)s; ++k) {
float Aelement = alty * % (MATRIX SIZE)s + k];
float Belement = b[k * % (MATRIX SIZE)s + tx];
Pvalue += Aelement * Belement;

clty * %(MATRIX SIZE)s + tx] = Pvalue;

}

nnn

MATRIX SIZE = 5

a_cpu = np.random.randn (MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
b cpu = np.random.randn(MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
c_cpu = np.dot(a_cpu, b _cpu)

a_gpu = gpuarray.to gpu(a_cpu)

b gpu = gpuarray.to_gpu(b_cpu)

Cc_gpu = gpuarray.empty ((MATRIX SIZE, MATRIX SIZE), np.float32)

°

kernel code = kernel code template % {
'MATRIX SIZE': MATRIX SIZE

}

Chapter 6

mod = compiler.SourceModule (kernel code)
matrixmul = mod.get function("MatrixMulKernel")

matrixmul (
a_gpu, b_gpu,
c_gpu,
block = (MATRIX SIZE, MATRIX SIZE, 1),
)

print the results
print "-" * 80

print "Matrix A (GPU) :"
print a gpu.get()

print "-" * 80
print "Matrix B (GPU) :"
print b _gpu.get ()

print "-" * 80
print "Matrix C (GPU) :"
print c_gpu.get()

print "-" * 80
print "CPU-GPU difference:"
print ¢ cpu - c_gpu.get()

np.allclose(c_cpu, c _gpu.get())
The example output will be as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\python
PyCudaMatrixManipulation.py

Matrix A (GPU):

[[0.90780383 -0.4782407 0.23222363 -0.63184392 1.05509627]
[-1.27266967 -1.02834761 -0.15528528 -0.09468858 1.037099 1]
[-0.18135822 -0.69884419 0.29881889 -1.15969539 1.21021318]
[0.20939326 -0.27155793 -0.57454145 0.1466181 1.84723163]
[1.33780348 -0.42343542 -0.50257754 -0.73388749 -1.883829 1]

GPU Programming with Python

Matrix B (GPU):

[[0.04523897 0.99969769 -1.04473436 1.28909719 1.10332143]
[-0.08900332 -1.3893919 0.06948703 -0.25977209 -0.49602833]
[-0.6463753 -1.4424541 -0.81715286 0.67685211 -0.94934392]
[0.4485206 -0.77086055 -0.16582981 0.08478995 1.26223004]
[-0.79841441 -0.16199949 -0.35969591 -0.46809086 0.20455229]1]

Matrix C (GPU):

[[-1.19226956 1.55315971 -1.44614291 0.90420711 0.43665022]
[-0.73617989 0.28546685 1.02769876 -1.97204924 -0.65403283]

[-1.62555301 1.05654192 -0.34626681 -0.51481217 -1.35338223]

[-1.0040834 1.00310731 -0.4568972 -0.90064859 1.47408712]

[1.59797418 3.52156591 -0.21708387 2.31396151 0.85150564]]

CPU-GPU difference:
[[0.00000000e+00 0.00000000e+00 0.00000000e+00 -5.96046448e-08

o

.00000000e+00]
.00000000e+00 5.96046448e-08 0.00000000e+00 0.00000000e+00
.96046448e-08]
.19209290e-07 2.38418579e-07 0.00000000e+00 -5.96046448e-08

—

—
1

.00000000e+00]
.00000000e+00 0.00000000e+00 -2.98023224e-08 -5.96046448e-08

—

.00000000e+00]

—

.19209290e-07 0.00000000e+00 0.00000000e+00 0.00000000e+00

o B O O o B u o

.00000000e+0011

Let's consider the PyCUDA programming workflow. First of all, we must prepare the input
matrix and the output matrix to store the results:

MATRIX SIZE = 2

a_cpu = np.random.randn (MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
b cpu = np.random.randn (MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
c_cpu = np.dot(a_cpu, b cpu)

Chapter 6

Then, we transfer these matrixes in the GPU device with the PyCUDA function gpuarray.
to_gpul():

a_gpu = gpuarray.to gpu(a_cpu)
b gpu = gpuarray.to_gpu(b_cpu)
Cc_gpu = gpuarray.empty ((MATRIX SIZE, MATRIX SIZE), np.float32)

The core of the algorithm is the kernel function:

__global__ void MatrixMulKernel (float *a, float *b, float *c)

{

}

int tx = threadIdx.x;
int ty = threadIdx.y;
float Pvalue = 0;

for (int k = 0; k < % (MATRIX SIZE)s; ++k) {
float Aelement = alty * % (MATRIX SIZE)s + k];
float Belement = b[k * % (MATRIX SIZE)s + tx];
Pvalue += Aelement * Belement;

clty * % (MATRIX SIZE)s + tx] = Pvalue;

Note thatthe global keyword specifies that this function is a kernel function, and it
must be called from a host to generate the thread hierarchy on the device.

The threadIdx.x and threadIdy.y are the threads indexes in the grid. We also note
again that all these threads execute the same kernel code, so different threads will have
different values with different thread coordinates. In this parallel version, the loop variables i
and j of the sequential version (refer to the code in the How to do it section) are now replaced
with threadIdx.x and threadIdx.y. The loop iteration through these indexes is simply
replaced by these thread indexes, so in the parallel version, we have only one loop iteration.
When the kernel MatrixMulKernel is invoked, it is executed as a grid of the size 2x2 of
parallel threads:

mod

= compiler.SourceModule (kernel code)

matrixmul = mod.get function ("MatrixMulKernel")

matrixmul (

a_gpu, b _gpu,

c_gpu,

block = (MATRIX_SIZE, MATRIX SIZE, 1),
)

GPU Programming with Python

Each CUDA thread grid typically comprises of thousands to millions of lightweight GPU threads
per kernel invocation. Creating enough threads to fully utilize the hardware often requires

a large amount of data parallelism; for example, each element of a large array might be
computed in a separate thread.

Finally, we print out the results to verify that the computation is ok and report the differences
between the ¢_cpu and ¢_gpu matrix products:

print "-" * 80
print "CPU-GPU difference:"
print ¢ _cpu - c_gpu.get()

np.allclose(c_cpu, c_gpu.get())

Kernel invocations with GPUArray

In the previous recipe, we saw how to invoke a kernel function using the class:

pycuda.compiler.SourceModule (kernel source, nvcc="nvcc", options=None,
other options)

It creates a module from the CUDA source code called kernel source. Then, the NVIDIA
nvcc compiler is invoked with options to compile the code.

However, PyCUDA introduces the class pycuda . gpuarray.GPUArray that provides a high-
level interface to perform calculations with CUDA:

class pycuda.gpuarray.GPUArray (shape, dtype, *, allocator=None,
order="C")

This works in a similar way to numpy . ndarray, which stores its data and performs its
computations on the compute device. The shape and dtype arguments work exactly as in
NumpPy.

All the arithmetic methods in GPUArray support the broadcasting of scalars. The creation of
gpuarray is quite easy. One way is to create a NumPy array and convert it, as shown in the
following code:

>>> import pycuda.gpuarray as gpuarray

>>> from numpy.random import randn

>>> from numpy import float32, int32, array

>>> x = randn(5) .astype(float32)

>>> X gpu = gpuarray.to_ gpu(x)

Chapter 6
You can print gpuarray as you do normally:

>>> xarray([-0.24655211, 0.00344609, 1.45805557, 0.22002029,
1.284386671)

>>> x gpuarray([-0.24655211, 0.00344609, 1.45805557, 0.22002029,
1.284386671)

How to do it...

The following example represents not only an easy introduction, but also a common use case
of GPU computations, perhaps in the form of an auxiliary step between other calculations. The
script for this is as follows:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit

import numpy

a_gpu = gpuarray.to gpu(numpy.random.randn(4,4) .astype (numpy.float32))
a_doubled = (2*a_gpu) .get ()

print a_doubled

print a_gpu

The output is (running the function from Python IDLE) as follows:

C \Python Parallel Programming INDEX\Chapter 6 - GPU Programming wit
h Python\python PyCudaGPUArray.py
ORIGINAL MATRIX
[[-0.60254627 1.16694951 1.48510635 -1.46718287 2.11878467]
[2.63159704 -3.6541729 2.44197178 -1.12101364 0.22178674]
[-0.87713826 -1.9803952 0.98741448 -2.83859134 -1.55612338]
[0.79552311 -0.25934356 -1.12207913 -0.21778747 -4.0459609]
[-1.74858582 1.34928024 -2.55908132 2.22259712 0.82242775]]

DOUBLED MATRIX AFTER PyCUDA EXECUTION USING GPUARRAY CALL
[[-0.30127314 0.58347476 0.74255317 -0.73359144 1.05939233]
[1.31579852 -1.82708645 1.22098589 -0.56050682 0.11089337]
0.43856913 -0.9901976 0.49370724 -1.41929567 -0.77806169]
0.39776155 -0.12967178 -0.56103957 -0.10889374 -2.02298045]
0.87429291 0.67464012 -1.27954066 1.11129856 0.41121387]]

GPU Programming with Python

Of course, we have to import all the required modules:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit

import numpy

The a_gpu input matrix contains all the items that are generated randomly. To perform the
computation in the GPU, (double all the items in the matrix) we have only one statement:

a_doubled = (2*a gpu) .get ()

The result is put in the a_doubled matrix (using the get () method). Finally, the result is
printed as follows:

print a doubled

There's more...

The pycuda.gpuarray.GPUArray supports all arithmetic operators and a number
of methods and functions, all patterned after the corresponding functionality in NumPy.
In addition to this, many special functions are available in pycuda . cumath. The arrays
of approximately uniformly distributed random numbers may be generated using the
functionality in pycuda . curandom.

Evaluating element-wise expressions with

PyCUDA

The PyCuda.elementwise.ElementwiseKernel function allows us to execute the kernel
on complex expressions that are made of one or more operands into a single computational
step, which is as follows:

ElementwiseKernel (arguments,operation,name,optional parameters)

Here, we note that:

» arguments: This is a C argument list of all the parameters that are involved in the
kernel's execution.

» operation: This is the operation that is to be executed on the specified arguments.
If the argument is a vector, each operation will be performed for each entry.

» name: This is the kernel's name.

» optional parameters: These are the compilation directives that are not used in
the following example.

220

Chapter 6

How to do it...

In this example, we'll show you the typical use of the ElementwiseKernel call. We have two
vectors of 50 elements, input_vector_a and input_ vector b, that are built in a random
way. The task here is to evaluate their linear combination.

The code for this is as follows:

import pycuda.autoinit

import numpy

from pycuda.curandom import rand as curand

from pycuda.elementwise import ElementwiseKernel
import numpy.linalg as la

input vector a = curand((50,))
input vector b = curand((50,))
mult coefficient a = 2
mult coefficient b = 5

linear combination = ElementwiseKernel (
"float a, float *x, float b, float *y, float *c",
"ce[i]l = a*x[i] + b*y[i]",
"linear combination")

linear combination result = gpuarray.empty like (input vector a)
linear combination (mult coefficient a, input vector_a,\

mult coefficient b, input vector Db,\

linear combination result)

print ("INPUT VECTOR A =")
print (input vector a)

print ("INPUT VECTOR B = ")
print (input vector b)

print ("RESULTING VECTOR C = ")
print linear combination result

print ("CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C
AND THE LINEAR COMBINATION OF A AND B")
print ("C - (%sA + %sB) = "% (mult coefficient a,mult coefficient b))

221

GPU Programming with Python

(mult coefficient a*input vector a\

+ mult coefficient b*input

print (linear combination result -
vector b))
assert la.norm((linear combination result - \

(mult_coefficient a*input vector a +\

mult coefficient b*input vector b)) .get())

The output for this from Command Prompt is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with

PyCudaElementWise.py
INPUT VECTOR A =

[

0.

0.73191601
75579387

0.35208538

.04270195

0.15690483

.45646626

0.35608584

.33111155

0.18454118

.4575595

0.55539894

.13928016

0.18071586

.55373788

0.07541087

.65380263

0.93845034

INPUT VECTOR

[

0.

222

0.29464501
0588627

0.99216938

.73907417

0.06841258

.90884209

0.39139062

.13706622

0.62038481

.99894243

0.28288943

.011460096

0.45902726

.42909116

0.2633251

.26024994

0.61452144

0.7004351

0.97497243

0.39899695

0.01598917

0.83971804

0.23285247

0.8029055

0.55443048

0.27472526]

B =

0.21645674

0.879906

0.1816148

0.97678316

0.22524452

0.55505407

0.03561942

0.07679776

0.46388686]

.87159222

.36948711

.2927697

.75943208

.01466237

.14676388

.05551658

19723719

.93407696

.07517455

.53327322

.41284555

.67131585

.14323047

.78358203

.80823648

0.49621502

0.34328628

0.36201504

0.49343511

0.77959627

0.72028935

0.49400434

0.72457349

0.48678038

0.84360296

0.30980903

0.17893282

0.06617502

0.54854101

0.32014725

0.57373965

< le-5

Python\ s>python

.19640177

.06811771

.09503061

.79146844

.54659295

.87861985

.40941685

.46491891

.71135205

.57358545

.96774238

.47421032

.02492006

.2742492

.13187674

.40740359

Chapter 6

RESULTING VECTOR C =

[2.93705702
1.80590129

5.6650176
3.78077483

0.65587258
5.45714283

2.6691246
1.34755421

3.47100639
5.90983152

2.52524495
0.33586511

2.65656805
3.25293159

1.46744728
2.60885501

4.94950771

2.48315382 6.41356945 3.42633176 3.94956398

6.34947491 1.11484694 4.90458727 3.00416279

1.70606792 3.25190544 2.2730751 5.02877283

4.91589403 3.58309197 1.88153434 3.95398855

2.80565882 3.38590407 1.89006758 1.21778619

3.24097538 1.00968003 4.18328381 3.12848568

1.78390813 4.02894306 2.58874488 1.47821736

1.49284983 4.43565702 4.31784534 2.96685553

2.86888456]

CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C AND THE
LINEAR COMBINATION OF A AND B

C - (2A + 5B)
[0. 0. oO.
0.

0 0. 0
0.

0 0. 0

After the usual import,

from pycuda.el

we note:

ementwise import ElementwiseKernel

We must build all the elements that are to be manipulated. Let's remember that the task to

be done is to evaluate
vector_b. These two

a linear combination of two vectors input vector aand input
vectors are initialized using the PyCUDA curandom library, which is

used for the generation of pseudorandom numbers:

To import the library, use the following code:

from pycuda.curandom import rand as curand

To define the random vector (50 elements), use:

input vector a
input vector b

= curand((50,))
= curand((50,))

223

GPU Programming with Python

We defined the two coefficients of multiplication that are to be used in the calculation of the
linear combination of these two vectors:

mult_coefficient_a

mult_coefficient_b 5

The core example is the kernel invocation for which we use the PyCUDA
ElementwiseKernel construct, shown as follows:

linear combination = ElementwiseKernel (
"float a, float *x, float b, float *y, float *c",
"c[i] = a*x[i] + b*y[il",
"linear combination")

The first line of the argument list (in a C-style definition) defines all the parameters to be
inserted for the calculation:

"float a, float *x, float b, float *y, float *c",

The second line defines how to manipulate the arguments list. For each value of the index 1,
a sum of these components must be evaluated:

"cli]l = a*x[i] + b*yl[il",
The last line gives the 1inear combination hame to ElementwiseKernel.

After the kernel, the resulting vector is defined. It is an empty vector of the same dimension
as of the input vector:

linear combination result = gpuarray.empty like (input vector a)
Finally evaluate the kernel:
linear combination (mult coefficient a, input vector_ a,\

mult coefficient b, input vector b,\

linear combination result)

You can check the results using the following code:

assert la.norm((linear combination result - \
(mult_coefficient a*input vector a +\
mult coefficient b*input vector b)) .get()) < le-5

The assert function tests the result and triggers an error if the condition is false.

In addition to the curand library, derived from the CUDA library, PyCUDA provides other math
libraries, so you can take a look at the libraries listed at http://documen.tician.de/
pycuda.

224

